Low aquaporin content and low osmotic water permeability of the plasma and vacuolar membranes of a CAM plant Graptopetalum paraguayense: comparison with radish.

نویسندگان

  • Y Ohshima
  • I Iwasaki
  • S Suga
  • M Murakami
  • K Inoue
  • M Maeshima
چکیده

Aquaporin facilitates the osmotic water transport across biomembranes and is involved in the transcellular and intracellular water flow in plants. We immunochemically quantified the aquaporin level in leaf plasma membranes (PM) and tonoplast of Graptopetalum paraguayense, a Crassulacean acid metabolism (CAM) plant. The aquaporin content in the Graptopetalum tonoplast was approximately 1% of that of radish. The content was calculated to be about 3 microg mg(-1) of tonoplast protein. The level of PM aquaporin in Graptopetalum was determined to be less than 20% of that of radish, in which an aquaporin was a major protein of the PM. The PM aquaporin was detected in the mesophyll tissue of Graptopetalum leaf by tissue print immunoblotting. The osmotic water permeability of PM and tonoplast vesicles prepared from both plants was determined with a stopped-flow spectrophotometer. The water permeability of PM was lower than that of the tonoplast in both plants. The Graptopetalum PM vesicles hardly showed water permeability, although the tonoplast showed a relatively high permeability. The water permeability changed depending on the assay temperature and was also partially inhibited by a sulfhydryl reagent. Furthermore, measurement of the rate of swelling and shrinking in different mannitol concentrations revealed that the protoplasts of Graptopetalum showed low water permeability. These results suggest that the low content of aquaporins in PM and tonoplast is one of the causes of the low water permeability of GRAPTOPETALUM: The relationship between the water-storage function of succulent leaves of CAM plants and the low aquaporin level is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aquaporins and Water Permeability of Plant Membranes.

The mechanisms of plant membrane water permeability have remained elusive until the recent discovery in both vacuolar and plasma membranes of a class of water channel proteins named aquaporins. Similar to their animal counterparts, plant aquaporins have six membrane-spanning domains and belong to the MIP superfamily of transmembrane channel proteins. Their very high efficiency and selectivity i...

متن کامل

Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings.

Aquaporins in the plasma and vacuolar membranes play a key role in the intercellular and intracellular water transport in plants. First, we quantitated the absolute amounts for mRNAs of eight aquaporin isoforms in hypocotyls of radish seedlings. Then, we investigated the effects of salt and water stresses (150 mM NaCl, 300 mM mannitol and 20% polyethylene glycol) and phytohormones (gibberellic ...

متن کامل

Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1.

Although secretin is known to stimulate ductal bile secretion by directly interacting with cholangiocytes, the precise cellular mechanisms accounting for this choleretic effect are unknown. We have previously shown that secretin stimulates exocytosis in cholangiocytes and that these cells transport water mainly via the water channel aquaporin-1 (AQP1). In this study, we tested the hypothesis th...

متن کامل

First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices.

Arbuscular mycorrhizal (AM) symbiosis is known to stimulate plant drought tolerance. However, the molecular basis for the direct involvement of AM fungi (AMF) in plant water relations has not been established. Two full-length aquaporin genes, namely GintAQPF1 and GintAQPF2, were cloned by rapid amplification of cDNA 5'- and 3'-ends from an AMF, Glomus intraradices. Aquaporin localization, activ...

متن کامل

Changing the Physiological Response and Water Relationships in Sweet Pepper When Stopping the Activity of Root Aquaporin in Drought Stress

Aquaporins are the main proteins in the plasma membrane, which facilitates the movement of water, carbon dioxide, and other small soluble material through the membrane. The aim of this study was to investigate the role of root acuporine on the physiological, biochemical and biochemical changes and water relations under drought stress. For this purpose, a study was conducted in a completely rand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 42 10  شماره 

صفحات  -

تاریخ انتشار 2001